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UNCERTAINTIES IN DERIVED TEMPERATURE-HEIGHT PROFILES

R. A. Minzner

Atmospheric and Hydrospheric Application Division

ABSTRACT

Nomographs have been developed for relating uncertainty in temperature T (or

in the corresponding scale height H) to uncertainty in the observed height profiles

of both pressure p and density p. The relative uncertainty 6T/T is seen to de-

pend not only upon the relative uncertainties Sp/p or 5p/p, and to a small extent

upon the value of T or H, but primarily upon the sampling-height increment Ah,

the height increment between successive observations of p or p. For a fixed

value of 5p/p, the value of 6T/T varies inverselywith Ah. For Ah =V2-H, which

is of the order of 10km, 5T/T= Sp/p. For Ah = 0.01km, 5T/T is about 1000

6p/p, while for Ah = 35km, ST/T is about 0.3 6p/p. In the case of T derived

from density-height data, this inverse relationship between 5T/T and Ah applies

only for large values of Ah, i.e., for Ah > 35km. For Ah <1km, ST/T 6p/p,

independent of the size of Ah. No limit exists in the fineness of usable height

resolution of T which may be derived from densities, while a fine height resolu-

tion in pressure-height data leads to temperatures with unacceptably large

uncertainties.
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SYMBOLS

Equation or

Basic Quantities and Coefficients Figure

A The dimensionless coefficient indicating the factor by

which (6p/p) is amplified to yield (6T/T) (20)

G The standard geopotential gravitational constant

9. 80665 m 2sec - 2 (m)- (1)

H Scale height in units of geopotential height, m' (or km') (1)

h Geopotential height in units of m' (nearly equal to geo-

metric height, but accounting for height variation of the

acceleration of gravity: i.e., Gdh= g(z)dz (1)

k A dimensional constant 0. 0341632 K/m' resulting from

the combining of the three constants GM/R into a single

value (4)

M mean molecular weight of air 28. 9644 kg kmol - 1 (1)

p atmospheric pressure Nm - 2  (1)

R Universal gas constant 8.31432 x 103 joules K- 1 kmol-1 (1)

S The value of a particular series of terms involving

density ratios (30)

T Atmospheric Temperature K (1)

x A general designation for a function of a number of

generalized variables (14)
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Equatidhn or

Basic Quantities and Coefficients (Cont'd.) Figuke

y A general designation for the set of variables of which

x is a function (14)

c A subscripted dimensionless coefficient with a value

near unity (23)

p atmospheric density kg m -3  (7)

Single Subscripts

1 Refers to a particular height h1 so that p,, T 1 , PI,

and h1 all refer to the same point in a given equation (4), (11)

2 Similar to 1 (4)

i Refers to an individual mermber of a set of re-

lated variables having the general designation yi (14)

i Also refers to a variable in an isothermal atmosphere

as Pi in the graph of (pi /Pr) versus h in Figure 1

j A general designation for an integer which may vary be-

tween 2 and q, and which is simultaneously associated with

a geopotential height as hj and with the related density as pj (21)

q A general designation for an integer which may have any

positive value and which is associated with the lowest

density-height data point (i.e., hq, pq) involved in a parti-

cular evaluation of an integral to determine the value of the

related temperature Tq. (11)
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Equation or

Single Subscripts (Cont'd.) Figure

q Also used as Sq where q implies the number of terms

in the series S (30)

r Designates a specific reference value for the basic

quantity of which it is a subscript, i. e., pr and pr Figure 1

Double Subscripts

1,2 Refers to a particular height layer as between h 2 and h , (4)

where h1 and h 2 are ordered in such a way that the

quantities within the subscripted parentheses have par-

ticular signed significance, i.e., A h is always positive

while AH is positive only when dT/dh is positive in the (10a), (23)

related layer and (24)

j-1,j Similar to 1,2 (25)

j,j+1 Similar to 1,2 (26)

q-1, q Similar to 1, 2 (27)

q, max designating maximum value of Sq, as in Figure 6.

q, min designating minimum value of Sq, as in Figure 6. (36)

Operators and Functions

Overbar as in T or H indicates the mean value of T or H

for the related layer (4)

Square root as / (20)

f Integral as f p(h)dh (11)
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Equati6n or

Operators and Functions (Cont'd.) Figure

a Partial differential as in ax (14)

d Differential as in dh (1)

Rn Natural logarithm as knp and knp (1) and (7)

A An increment as in Ah and AH (4) and (10a)

6 An increment or random uncertainty as in 6y i , 6p , (14), (15)

6Ah, 6T 1 , 6 pj, 6 Tq, and 6 Pq and (21)

I A summation of a set of terms (12), (14)
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AN ANALYSIS OF THE ERRORS ASSOCIATED WITH

THE DETERMINATION OF ATMOSPHERIC TEMPERATURE

FROM ATMOSPHERIC PRESSURE AND DENSITY DATA

I. INTRODUCTION

Relationships between pressure, temperature, and height in the earth's atmos-

phere are well known, and for many years have been the basis for height deter-

mination in balloon-radiosonde flights making observations of pressure and tem-

perature in meteorological probings of the lowest 30 kilometers of the earth's

atmosphere. When radar-tracked rocket vehicles extended the potential atmos-

pheric probing capabilities to heights up to 100 kilometers, into regions where

pressure is still measurable, but where existing technology does not allow for

immersion sensing of temperature, these same mathematical relationships

were used to extract temperature from the measured pressures and radar-derived

rocket-height data. The unsmoothed temperature-height values from many of

these soundings represented a very jagged height profile,, with the degree of jag-

gedness apparently increasing as the height increment between successive data

points decreased. Investigators usually have been unable to determine how much

of this jaggedness represents real temperature variability, and how much is

attributable to measurement error.

The hydrostatic equation and the equat'.on of state lead to another set of

height relationships: those between atmospheric density, temperature,
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and height, such that temperature may also be computed from density-

height data. In cases where such computations have been made, partic-

ularly in the height region of 30 to 100 km, the resulting temperature-height pro-

files appeared to be less jagged than those derived from pressure-height data

with comparable height resolution.

The apparent difference in the jaggedness of density-derived temperature-height

profiles from those associated with pressure-height data suggest that the height

increments of the pressure and density data do affect the uncertainty in the de-

rived temperatures, and that the influence of height increments in relation to

density data may be different from that in relation to pressure data. Obviously,

the error analyses presented in this paper, involving both the pressure-

temperature-height relationship, and the density-temperature-height relation-

ship, are needed. The error analyses confirm the fact that important differences

do exist between these two sets of relationships, particularly in regard to the in-

fluence of the height increment on the propagation of measurement uncertainties

into the temperature-height profile.. These differences strongly favor the use of

density-height data over pressure-height data.
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II. FUNDAMENTAL CONSIDERATIONS

A. Pressure-Height Relationships

The equation of state, when combined with the differential form of the hydrostatic

equation to eliminate density p, yields an expression frequently referred to as the

hypsometric equation:

dQnp -GM -1
(1)

dh RT H

where p is atmospheric pressure,

h is a measure of the height above sea level, in geopotential meters m'

T is absolute temperature of the atmosphere at h,

R is the universal gas constant,

M is the mean molecular weight of air,

G is a constant when h is expressed in geopotential, and

H is the scale height in geopotential units.

Solving equation (1) for T and H, respectively, yields

GM -dh
T - (2)

R dQnp

and

RT -dh
H= - (3)GM d np

When values of £np versus h are known from numerical data rather than from an

analytical function, it is convenient to replace the expression -dh/d2np, which

applies to a specific height, with a numerical approximation (h 2 -h 1 )/(£npl-9np 2 ).
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Inthis approximation, p is the pressure at h1, and p 2 is the pressure at h2 . The

approximation therefore represents the mean value of the reciprocal of the deriv-

ative over the height interval (h2 -h 1 ). When the point value of the derivative is

replaced by the numerical approximation, in both equations (2) and (3), the related

values of T and H no longer apply to a single height, but rather become the mean

values T and H, respectively, associated with the height interval (h2-h ). Thus,

we have

GM h2 - h (Ah)1, 2
- k. (4)

R Qnp I - np2  1np1 -QnP 2

where k = GM/R = .034163 OK/m', and (Ah) 1 ,2 = h2 -hi, and where, from the

relationship between T and H implicity in equation (1), we see that

- h2 - h _ (Ah)1, 2  (5)
Qnp, - Qnp 2  np 1 - nP2

From equation (5), we obtain the following expression which will be of special

importance in the uncertainty analysis in Section III:

1 = -__) (6)
£np - Qnp 2  (h) ,2

The interrelationships between £np, d£np/dh, T, and H, all as a function of

height as expressed by equations (1), (2) and (3), are shown pictorally by four

of the six height-related graphs of Figure 1. This figure, which depicts the

properties of a portion of the 1974 U. S. Standard Atmosphere (in preparation),

was developed from a preliminary set of abbreviated tables representing a por-

tion of this revised standard atmosphere (Kantor and Cole 1973). Geopotential
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Figure 1. The U.S. Standard Atmosphere as Represented by Graphs of Five
Atmospheric Properties versus Height, i.e., Temperature, Scale Height,
Natural Log of Density Ratio, Natural Log of Pressure Ratio, and Derivative of

Natural Log of Pressure Ratio with Respect to Height, Plus a Sixth Property

for Comparison, i.e., Natural Log of Density Ratio versus Height for an

Isothermal Atmosphere
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height is scaled linearly along the abscissa of Figure 1. Atmospheric presure;

which is plotted in the form of the natural logarithm of the ratio (p/Pr), has its

ordinate scale at the left of the figure, and is depicted by the lower of the three

lines diagonally crossing the entire figure from upper left to lower right. In this

presentation of pressure, Pr in the ratio (P/Pr) has been made equal to one Newton

per square meter (i.e., 1 N m- 2 ), so that the numerical values of (p/pr) are

those of p inN m -2 , while the scale of kn(p/pr) at the left of the figure implies

no dimensions.

The graph of dknp/dh, which quantity is negative and inversely proportional to T,

shows that the slope of n(p/pr) versus h, or equivalently the slope of 2np versus

h, is constant only in height regions over which T is invariant. These portions of

the graph of dknp/dh versus height corresponding to constant T (i.e., the three

height intervals 11 to 20 km', 47 to 57 km', and 84.852 to 89.716 km') consist

of horizontal straight-line segments, while the remainder of that graph consists

of 5 curved segments. The scale height, which is directly proportional to T, is

seen to remain within the range of 5.45 and 7. 95 km', with a median value of

6.5 km'.

B. Density-Height Relationship 1

When the differential form of the hydrostatic equation is combined with the differ-

ential form of the equation of state to eliminate the differential of pressure, we

6



obtain the following relationship between temperature and the density-height

function:

-dh GM dTl
T I - (7)

dnp LR dhJ

In the absence of an analytical expression for p(h), a numerical approximation

for dh/dOnp leads to a mean value of temperature T for the height interval h 2 - hi:

h2 - h G M  T 2  (T -h2- +T ] (8)
np 1 -Qnp2 h2

In terms of scale height, this expression becomes

S h2 -h HZ-Hi
= - h + H(9)

£np, -knp2 h2 -h i

It is important to note that while equation (8) expresses the mean temperature

for the layer h i to h 2, the expression involves the average gradient of T with

respect to h within that layer. A similar situation prevails for the expression

of the mean scale height in equation (9), where H = (H2 + H,)/2. Since prior

knowledge of the value of neither (T2 - T 1)/(h 2 - hi) nor (H2 - H1)/(h 2 - hi) is

generally available, equations (8) and (9) are not of themselves useful relation-

ships for temperature-height determination. One version of the following ex-

pression derived from equation (9), however, will be of special importance in an

uncertainty analysis in Section IV. This expression is

1 (H 2 + H1)/2
- (10)

np, -knp 2  (h 2 - h) + (H 2 - H)

Equation (10) is written for the case in which h 2 > h1 , as when data are being

analyzed from lower to greater heights, such that p, > p 2 . If the equation is to

7



apply to data being analyzed from greater to lower heights, as is the preferred

case for the integral form of the density-height function, involving the normal

atmosphere, h 1 is gi-eater than h 2 such that p2 > p1 , and equation (10) must be

rewritten as

1 _ (H + H)/2 (10a

knp 2- np 1  (h -h 2) + (H -H 2) Ah +AH, 2

In this expression Ah is always positive, and AH is positive in regions of positive

temperature gradients, zero in regions of zero temperature gradients, and neg-

ative in regions of negative temperature gradients.

C. Density-Height Relationship 2

The integral of the hydrostatic equation, when combined with the equation of state

to eliminate the pressure, yields the following directly useful integral expression

relating temperature to density:

p GM 1 hq
T . T p(h) dh (11)

Pq R pq h1

The temperature Tq is not the mean value of temperature for some layer, as in

the case of T in equation (4), rather, it is the temperature at the specific height

hq.

It has been demonstrated (Minzner, et al. 1964 and 1966) that the properties of

equation (11), when applied to a helium atmosphere, differ markedly from those

observed when the equation is applied to an argon atmosphere. With an air at-

mosphere having a mean molecular weight of about 29, the properties of this

8



equation are similar to those found when the equation is applied to an argon at-

mosphere in which the integration optimumly proceeds from the greatest to the

lowest altitude of the density-height data. Inthis situation, T 1, PI, and h 1 are

each associated with the greatest height of the data set, while Tq, pq, and hq are

each associated with the running value of h. This is the height for which the value

of Tq is being computed, a height which varies progressively from h, to the low-

est height of the data set as the calculation of the profile proceeds.

Because p(h) is usually known numerically rather than analytically, it is conven-

ient to replace the integral of equation (11) with an appropriate series approxima-

tion, one of which is governed by the logarithmic trapezoidal rule (Smith 1965,

Minzner, et al. 1965). With the use of this approximation, equation (11) may be

rewritten as

p GM 1 (hi -hj)(pj p )Tq =  p T + R * p - J (12)
Pq R Pq j=2 npj-npj 1

The logarithmic-trapezoidal-rule approximation is a particularly suitable one

for the integration of atmospheric density with respect to height, because, in a

graph of measured values of np versus h, the straight-line segments between

successive data points exactly represent the conditions of the logarithmic trape-

zoidal rule, and also very closely represent the conditions of the real atmosphere.

The latter is evident from the nearly straight-line segments of an idealized ver-

sion of the real atmosphere shown in the graph of £n(p/pr ) versus height in Fig-

ure 1. For this graph, which represents the densities of the 1974 U.S. Standard

9



Atmosphere, the value of pr was chosen tobe 1 x 10 - 5 kg m - 3 , so that the single

ordinate scale at the left of the figure applies to both Vn(p / pr) and Qn(p/pr) . The

shape of the curve 2n(p/pr ) versus h is identical to the shape which the curve Qnp

versus h would have, since the values of n(p/p r ) vs. h and of Qnp vs. h are off-

set by the constant difference knpr at all heights.

Figure 1 also contains a graph of Qn(p i /Pr) in the form of a continuous straight

line immediately above the graph of kn(p/pr ). This single straight line

diagonally across the entire figure is characteristic of the density of an isother-

mal atmosphere extending upward from a height of 7. 625km where the standard-

atmosphere density is 5. 8281 x 10-1 kg m - 3 , and where the temperature and the

corresponding scale height are 238. 587 K and 7, 000 kin', respectively. For this

specialized atmosphere, the logarithmic-trapezoidal rule represents a series

which exactly duplicates the integral of equation (11). The small deviations of

the slopes of kn(p/pr) versus height from those of Vn(Pi/Pr) versus height show

the small influence of the variation of atmospheric temperature from the fixed

value, 238. 587K, (in the height region of 10 to 90km') on the general shape of

the curves of Qn(p/pr) and Qnp versus h. (The influence of temperature variation

upon the curves of n(p/p r ) and £np versus h is similarly small.)

In the evaluation of Tq by equation (11), or by any appropriate approximation of

that equation as exemplified by equation (12), a knowledge of the initial tempera-

ture T1 is of importance only for the upper regions of the profile. For hq = h i ,

10



the value of (pl/pq)T1 is exactly T 1 , since p = pq and the integral term is, of

course, zero. As the value of hq decreases from hi, i.e., as (h, - hq) increases,

the value of the relative contribution of the density-ratio term decreases, while

that of the integral term correspondingly builds up. When (h i - hq) increases

from zero, first by one scale height and then by three scale heights, the relative

contribution of the density-ratio term to Tq decreases from 100% to about 37%,

and then to about 3%, because of the large decrease in the value of (pl/Pq) over

these height regions. Simultaneously, the value of the integral term grows cor-

respondingly. At heights of more than three scale heights below h i , the value of

Tq is determined almost completely by the integral term alone. Figure 2 shows

the relative contributions made to Tq by the density-ratio term, and by the inte-

gral term of equation (11) as a function of the range of the limits of integration

(hi - hq) expressed in units of scale height.

The graphs in Figure 2 are based on the density-height profile for an isothermal

atmosphere (T = 238.587K) for which Qnp is a linear function of height as pre-

viously shown in the graph of n(pi/pr) in Figure 1. Only small variations from

the values of the two terms of equation (12) depicted in Figure 2 would be seen

for calculations based on a real, variable-temperature atmosphere.

The elimination of T between equation (12) and equation (3) yields the following

expressioh for scale height:

Pl + I -q (h - h.) (p - pj )
Hq = H + - . (13)

pq Pq j 2 npj - np 1
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Figure 2. Relative Contribution MIvade to the Calculated Temperature by the

Density-Ratio Term and by the Integral Term of Equation (11) as a Function of

the Size of the Altitude Range of Integration, for a 238 K Isothermal

Atmosphere

The relative contribution of each of the two terms of this equation to Hq, as a

function of the range of integration (h1 - hq), follows exactly the same pattern

shown in Figure 2 with regard to Tq.

Atmospheric soundings of both pressure and density have for many years served

as the basis for the determination of the height profiles of temperature and scale

height. From pressures, these profiles are obtained through equations (4) and

(5) respectively, while from densities, they are obtained through one or another

version of equations (12) and (13), respectively. It is obvious that the uncertainties

12



of these derived temperatures and scale heights are a function of the uncertainty

in the measured quantities, pressure or density. Somewhat less obvious is the

fact that the height interval between successive observations of pressure or

density strongly influences the propagation of the observational uncertainties

into the computed temperatures and scale heights. A rigorous error analysis

of both of these pairs of equations demonstrates this situation. The pressure-

related equations are analyzed in Section III, while the density-related equations

are analyzed in Section IV.
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III. UNCERTAINTY OF TEMPERATURES DEDUCED FROM PRESSURES

The error-analysis method employed is the first-order Gaussian method, wherein

each variable yi entering into the expression of a particular function of these

variables x(y) is assumed to have an observational uncertainty 5 yi which meets

the conditions of a Gaussian or normal distribution about yi , where yi is the

mean of a set of individual observations of the ith variable, or the true value

of the ith variable. Thus, if the value of x is determined from the functional

expression x(yi ), the value of 6x, the implicit uncertainty in x, is given by

(bx)2 =E- Ix . 2yi (14)

Applying this relationship to the variables of equation (4) yields

6T= 6p + T .p 2 + h - Ah 2 (15)

It may be shown that the partial derivative of T with respect to any one of the

independent variables yi in equation (4) has the general form

T - kAh 6y
-- *Yi =  " (16)
ayi (Qnp 1 - np 2 ) 2  Yi
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where Ah is associated with (h 2 - hi) without benefit of subscripts. Applying

this generalized expression to equation (15) yields

+kAh ! p, 2 p2 \ 2 6Ah2
( = P -- I - + +-- (17)
(Qnp, - np 2)2L\ P1  P2  Ah

where 6pl and 6p2 are the pressure uncertainties of two consecutive pressure-

height values, and 6Ah is the uncertainty of the height interval Ah between

the corresponding two pressure-height values.

Dividing each side of equation (17) by the appropriate side of equation (4) yields

the relative uncertainty

_T_ 1 A 2 p\/2 2\h2
-- n n 2LP] +-P- +  z J(18)

It is convenient to assume that all the uncertainty of a pressure-height point is

in the pressure, and that the height increment is exact. In this case, the values

of both 6p and 6p2 are correspondingly increased over their actual values, and

the term involving 5Ah in equation 18 vanishes. It is further assumed that the

relative uncertainty in measured values of p is the same at h1 and h2 , i.e.,

6pI/pl = 6P2/P2 = 6p/p. These two assumptions permit equation (18) to be re-

duced to the simpler form,

6T _ 6p (19)
(19)

T -np 1 - np 2  P

From equation (6) it is apparent that 1/(9Qp, - knp 2 ) in equation (19) may be

replaced by (H/Ah)1 ,2 where H is the mean scale height for the layer

15



h2 - hl = (Ah)1,2 * Thus, equation (19) may be rewritten as

r=2A 1 2 .'P , (20)
1,2 P '

This equation indicates that (6T/T), the relative uncertainty in T the mean

temperature of a layer (Ah) 1, 2 (i. e., the layer bounded by pressures p1 and P 2),

is equal to the relative uncertainty in the pressure measurements (Sp/p) times

a coefficient A 1,2 • This coefficient is seen to depend upon only two quantities,

the mean temperature T of the layer h 2 - h1 (T being implicit in H), and (1/Ah),

the reciprocal of the thickness of the pressure-sampling interval (h2 - h 1 ). Since

the maximum value of T in the earth's atmosphere below h = 100 km' is less

than twice its minimum value, and since Ah can, in principle, be made to vary

over many orders of magnitude, it is apparent that Ah is the dominant factor in

determining the propagation of (Sp/p) into (ST/T).

A graph of the coefficient A1,2 as a function of Ah for three specific values of

T, 169.10 K, 241.57 K, and 314.04 K, is given in Figure 3. The first and

third of these temperatures were selected in part because they are close to the

lowest and highest atmospheric temperatures normally observed at heights below

120 kn, while the second is the mean of the extremes. In addition, these three

values were specifically selected to correspond, respectively, to a particular set of

three scale heights, i. e., (7/V), (10/V/), and (13//) km'. In each of these three

cases, the value of A1 ,2 is unity when Ah (equal to N/2- R) is a particular integer

multiple of one geopotential kilometer, i.e., 7, 10, and 13 km', respectively.
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It is interesting to note that, for the entire range of normally observed tempera-

tures at heights below 100 km', the pressure-sampling interval Ah corresponding

to unity for the coefficient A 1,2 varies between the limited range of 7 to 13km'.

The pressure-sampling height interval, however, may actually vary over

several orders of magnitude depending upon the design of the measuring system.

The value of the coefficient A1 ,2 could correspondingly vary over several orders

of magnitude depending upon the choice of Ah.

Concentrating on the median value of T, and allowing the pressure-sampling

interval Ah to decrease, first from 104 m' to 103 m', and then to 102 m', causes the

value of A 1,2 to increase first from Ito 10, and then to 100, respectively, such

that the uncertainty in the value of T as expressed by equation (20) increases by

identical factors for a fixed uncertainty in the pressure. Conversely, as Ah is

increased from 10 4 m'to 105 m ', the value of A1,2 decreases from unity to 0. 1,

such that the uncertainty in a related mean value of T decreases correspondingly.

Figure 3 shows that when mean temperatures are deduced for successive layers

from pressure observations having a fixed uncertainty, finer height resolution

in the resulting temperature-height profile is obtained at the expense of tempera-

ture accuracy, while increased temperature accuracy is achieved at the expense

of height resolution. Since the ultimate accuracy of pressures obtained from

any high-altitude balloon-borne or rocket-borne pressure-sensing device is

limited by considerations of various perturbing phenomena such as outgassing,
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boundary layer, and shock wave, the value of 6 p/p has a practical lower bound.

Thus, ( T/T) * (Ah// H) which is equal to 5p/p similarly has a practical

lower bound, and for this minimum value of 5p/p, 8T/T is governed by the

value of the ratio (Ah/H).

Figure 3 shows the effect of variations of both T and Ah on the value of the

coefficient A 1,2 = (~ * H/Ah). By expressing Ah in multiples of one scale

height, the number of variables in equation (20) is effectively reduced by one,

and values of 6 T/T can be plotted as a function of Ah = n * H (where n is the

value along the abscissa) for any particular value of Sp/p. Figure 4 presents

such a graph for each of nine values of pressure uncertainty.

In Figure 4, the straight-line graph for 1% uncertainty in p intersects the co-

ordinate for 1% uncertainty in T at the abscissa coordinate value of 1.414.

This same straight-line graph for 1% uncertainty in p intersects the ordi-

nate values of 10%, 100%, and 1000% at abscissa values of Ah equal to

0.1414, 0.01414, and 0.001414, respectively. This series of four suc-

cessively decreasing values of Ah, each being one tenth of the preceeding

one, yields a geometric series of four increasing values of 6T/T, each being

ten times the preceeding one. A similar situation prevails for each of the eight

other values of 6p/p, for which lines have been plotted. The value of iT/T is

obviously varied over orders of magnitude by comparable variations of the value

of the ratio H/Ah. For height increments with a value of / times one scale
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height, relative temperature uncertainties are seen to be equal to relative pres-

sure uncertainties for all nine values plotted.

In order to show simultaneously the small additional influence produced by the

allowable range in the value of T as it appears both in 6 T/T as well as intrinsi-

cally in H, the single-line graph for each value of bp/p in Figure 4 is expanded

into a band in Figure 5 where the pressure-sampling height is expressed in

meters as in Figure 3.

The lower left-hand edge of each band corresponds to T = 169.10 K, while the

upper right-hand edge of each band corresponds to T = 314. 04 K with other

points across each band corresponding linearly to intermediate temperatures.

Thus, Figure 5 serves as a nomograph from which one may estimate the per-

cent uncertainty in particular atmospheric temperatures computed from pressure-

height data measured with a specified uncertainty over particular height

increments.

Three sample applications of this nomograph are cited: In the first it is desired

to determine the maximum pressure-gauge uncertainty allowable to achieve a

1% uncertainty in a mean temperature of about 240 K for a layer thickness

of 100m'. We look for the intersection of the 100m' abscissa value with

the 1% ordinate value, and find that it lies near the 242 K value of the 0. 01%

pressure-uncertainty band. Thus, pressures would have to be measured with

an uncertainty no greater than 0. 01% to achieve the desired results. Since it is
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essentially impossible to achieve such a small uncertainty in any rocket or bal-

loon measurements of pressure, this combination of height resolution and

temperature uncertainty is essentially impossible to achieve from pressure-

height data.

In the second example, we assume a pressure-gauge uncertainty of 3 percent,

and a mean temperature of 180 K, and seek the temperature uncertainty associ-

ated with particular sampling-height increments. If the pressure sampling-

height interval is 3 kilometers, this ordinate value is seen to intersect the

appropriate region of the band for 3 percent pressure uncertainty at a value

corresponding to a temperature uncertainty on the ordinate scale of about 7. 4%,

or about 13. 3 K. A doubling of the layer thickness to 6 km would halve the

temperature uncertainty.

The third example involves the inverse problem of estimating the uncertainty

in the computed pressure differential associated with an assumed isothermal

layer of fixed thickness. If the 'layer has a thickness of 3 km, as may be the

situation in the grenade experiment (Nordberg and Smith 1964), and if there is

an uncertainty of about 2% or 5 K in an assumed mean temperature of 250 K,

the graph shows that the combined uncertainty of the two boundary pressures

lies between 0. 3% and 1. 0% or about 0. 6% on a logarithmic scale. For a layer

thickness of 1km, the boundary-pressure ancertainties would increase by a

factor of 3. If the assumed isothermal layers were used to generate
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density-height profiles rather than pressure-height profiles, the uncertainties

in the densities would be somewhat larger than in the pressures because of the

required vector addition of the temperature uncertainty and the pressure un-

certainty to obtain the density uncertainty.

24



IV. UNCERTAINTY IN TEMPERATURES DEDUCED FROM DENSITIES

Applying the first-order Gaussian method, equation (14), to the determination

of the uncertainty in temperatures deduced from density-height data through

equation (11) leads to

T 2 3T q - 1 aT 2 2q

5Tq °= T . 2T + q . P)2 + ( pq 5P) + ' _pq) (21)

provided that we assume all the uncertainty in a density-height point to be con-

centrated in the density. Because scale height combines the temperature with

several constants, its use facilitates the expansion and analysis of an equation

like equation (21). Consequently, it is convenient to rewrite that equation as

H [j ) .8 ) + (apc +) . (22)

Both equations (21) and (22) involve (q + 1) terms, where q is the number of

density-height data points. The first term is associated with the uncertainty

of the temperature or the scale height at h , while each of the q additional terms

deals with the uncertainty of one of the successive q density-height data points,

respectively. Three of the (q + 1) terms have a uniqu format. These are the

first, the second, and the last terms; those involving ST1 (or 6HI), pI ,

and bpq, respectively. The remaining terms, however, the third through the

qth term involving 5p 2 through 5 pq -I, respectively, have a common format.

Thus the sum of these common-format te'-ns may be expressed as the summa-

tion of a general term. Applying the operators indicated in equation (22), dividing
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both sides of the resulting equation by Hq, and introducing equation (10a) yields

the following equation:

= 2" -- H 2P (,2)1 ) 2

- , L-(24)k=~ Pq 2 k\Ah+AH/ q P i

1 2  H Ah+AH) + 1 2 , (2

=. (- h;H 1  (25)

than the comparable uncertainty expression + terms of pressure-height data as
q 3i-, i

for the corresponding height layer, while equation (23) involves the uncertainty

26
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Pq q ' H Ah + H
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height at height hq. It is emphasized that the quantities Tq or Hq in equations

(11) through (13), and again in equations (21) through (23), represent values for

specific heights, and not mean values for specific layers as in the case of the

pressure-related equations.

Each element of equations (23) through (27) is associated either with a specific

height or with a specific layer. Elements having a single subscript, e.g., H1,

1V Pj I Pj, - Pj+ 1, Pq - 1 Pq, and Hq signify the value of the particular quantity

at heights hi, hi, h _I, hj+l, hq I, and hq, respectively. Quantities with a

double subscript, e.g., ,2 - 1 ,j, etc., represent a quantity associated with

particular layers, i.e., the layers bounded by h 1 and h 2, or by hj _ and h , etc.,

respectively. Thus, al,2, as expressed by equation (24), represents an algebraic

expression of four different quantities three of which, namely H, Ah, and AH,

are associated with the layer h1 to h 2. In equation (24), H is the mean scale

height for the layer Ah = h 1 - h 2, while AH represents the change in scale

height within that layer, i. e., H 1 - H2, such that only in a region where the

gradient of H or T with respect to height is positive will AH be positive. The

quantity Hq is, of course, the value of H at height hq. Similarly, jij i, j, + 1

and aq _,q, as defined by equations (25), (26), and (27), respectively, each

represent quantities associated with the particular appropriate layers. Equation

(23) also includes the doubly subscripted quantities

Ah+ ) 1 ,2 ' ( AhAH)j ' \Ah+ AH j+ h + q-l,q
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each of which represents one factor of the right-hand side of equations (24),

(25), (26), and (27), respectively. The influence of non-zero gradients in th6

temperature-height profile is impressed upon 5Hq/Hq through all the double

subscripted quantities in equation (23).

In order to more clearly see the influence of sampling-height interval alone on

5Hq, it is convenient to assume an isothermal atmosphere, and to correspondingly

simplify equation (23). In this case, scale height would not vary, but would

remain fixed at a value H over the entire region of integration, and the following

relationships would apply: H 1 = Hq = H, H = H, and AH is zero in all layers.

Under these conditions, equations (24), (25), (26), and (27) become unity, as

does the ratio H1/H q, and equation (23) may be rewritten as

(6H )2 H)2 [2P 2

\""q (q _1,2 )

-1

j2 j, j+ - !j )2 (28)

~q_ j_ ) pqpq Pq 2

P) Pq 1,q

It can be shown that

q = P , (29)
• 1 Pq Pq
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such that these two terms in the coefficient of (5pq/pq) in equation (28) cancel

each other. Then, if we impose the additional condition that the height incre-

ments between successive density-height data points are constant over the entire

region of integration, this condition plus equation (29) permit the further simpli-

fication of equation (28) to

SHq 2 pI 1 2

(30)

Pq +1  J+ Pq P j
2H~z~ q 1 2 = + j P - 2

If we impose still another restriction, i. e., that the relative uncertainty of the

density data has the constant value 5 p/p for all heights within the range of inte-

gration, p/pl = =p/p q/q S= p/p, and we may rewrite equation (30) as

(6Hq2 = ( 2 6HI 2

..H (3 1)
+ (fi)2 [( -p)2 q 1 - 2 + pj _ 1)2 Pq -P 1 ( 2

The restriction permitting this simplification, while somewhat unrealistic from

the point of view of any measuring system, is acceptable because, itwillbe shown

below, the relative uncertainty of only pq enters significantly into the value of

6Hq/Hq. It is convenient to representthe sum of the ser- es of the squares of the sev-

eral density ratios in the coefficient of (Sp/p) 2 in equation (31) by (Sq)2, such that

q q2 j + - + Pq Pq-(
Sq (P2p ) 2  P + 2p + pj _ (2 qq 1  (32)

j=2 Pq P

with this simplification equation (31) may be rewritten as

Hq2 )] 2 + *] 2 (33)
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Finally, recalling from Figure 2 that the ratio (p /Pq) causes the contribution

of H 1 to Hq in equation (13) to become negligible when the integration has pro-

ceeded downward from h1 by more than about three scale heights, we recognize

that the contribution of 5 H /H 1 to 6 Hq/Hq in equation (33) must similarly be

negligible for hq sufficiently below hl. Thus, for this condition, equation (33)

may be approximated by

6H H
S- S * (34)

H -qpHq

Also, since 5Hq/Hq is identically equal to 6Tq/Tq, it is convenient at this point

to return from scale-height notation to temperature notation, and equation (34)

is rewritten as

6 Sq ' r* (35)
Tq q 5p

This equation represents the relative uncertainty in Tq, the temperature at

height hq, as deduced from a set of density-height data measured with a constant

relative uncertainty (Sp/p) over the entire range of a height region h 1 down to hq,

where (h1 - hq) is equal to at least three scale heights, in a portion of a planetary

atmosphere which is isothermal, at some value associated with H. These con-

ditions might apply'to the earth's atmosphere at heights above about 400 km.

Since equation (35) excludes several of the variables included in the most general

form of the uncertainty expression as given by equation (23), this simpler version

is more readily examined for the influence which variations in the sampling-height

interval Ah alone have upon 5Tq/Tq.
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Equation (35) for 6Tq/Tq, in terms of the relative uncertainty in density, is very simi-

lar to equation (20) for 6 T/T in terms of the relative uncertainty in pressure, except

that Sq in equation (35) takes the place of vi in equation (20). Therein lies a great dif-

ference, because the quantity Sq is a dimensionless function of three variables, H,

Ah, and (hI - hq), and has a value which varies between V2and zero, as Ah varies

from large values to zero. For Ah > 5 H, the value of Sq approaches NVasymptotically

as Ah approaches infinity, independently of the value of H or (h1 - hq). For Ah <0.2 H,

the value of Sq decreases linearly with decreasing values of Ah, for any fixed value of

Hor(h -hq).

The influence of variations of both Ah and (h, - hq) upon Sq, and implicitly upon

5Tq/Tq, is seen in Figure 6. Here, for a fixed value of H = (10/2) km, a band

of values of Sq is plotted as a function of Ah on a fully logarithmic scale, with

ordinate values of Sq given on the right-hand side of the figure. The upper limit

of the band is designated Sq,m ax , and is plotted as a line of long dashes, while

the lower limit of the band is designated Sq,min , and is plotted as a solid line.

The range of the values of Sq within the band, at any particular value of Ah, rep-

resents the influence of variations of (h, - hq) at that value of Ah, with the value

of Sq increasing as (hi - hq) decreases. The smallest possible value of (h, - hq),

at any particular value of Ah, is of course Ah, and hence Sq,max depicts the locus

of the values of Sq associated with the condition that (h1 - hq) = Ah. Thus, this

upper limit of Sq represents the value of equation (32) when that equation involves

only the first two density-altitude points of a data set, i. e., the value of Sq for

the case when 6Tq/Tq is being computed for the height hq associated with the
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second-highest density-height data point in the sounding. For this situation, the

right-hand side of equation (32) reduces to [/2(pq - P )/Pq] . As the height for

which one computes 5Tq/Tq is lowered from h 1 , such that (h1 - hq) becomes

increasingly large, the value of Sq slowly decreases, and asymptotically ap-

proaches a lower limit Sq,min when (h1 - hq) is greater than three scale heights.

It is convenient to define the ratio of Sq,max to Sq,min as R, and to examine the

variation of R with respect to variations in Ah. As long as Ah is smaller than
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about 0. 2 H, R retains a nearly constant value (a value which is seen graphically

to be approximately equal to \/), and both Sq,max and Sq,min are seen to make

an angle of about +450 with respect to the abscissa. Because of the feature of

a nearly constant slope of +1 for both Sq,max and Sq,min in the region where

Ah < 0. 2 H, this region is hereafter designated as the small-increment regime.

As Ah exceeds 0.2 H, and increases toward 5 H, the slopes of both Sq,max and

Sq,min gradually decrease toward zero. However, the slope of Sq,max decreases

more rapidly than that of Sq,min so that Sq,max approaches Sq,min at a common

value /2, while the value of the ratio R decreases from Ni toward unity. For

Ah > 5 H, the value of R is essentially constant at unity, and the slope of the line

common to both Sq,max and Sq,min is essentially zero. The feature of an essen-

tially zero slope for this common line representing Sq versus Ah, specifies a

region which, because of the related large value of Ah (i.e., Ah > 5 H) is here-

after referred to as the large-increment regime. The region between the small-

increment regime and the large-increment regime, i.e., the region for which

0. 2 H < Ah < 5 H, is hereafter referred to as the transition regime.

In the large-increment regime, where Sq,max and Sq,min are essentially identical,

it is apparent that Sq is essentiallyindependentof (h1 - hq). In the small-increment

regime, the concern for the influence of (h, - hq) upon Sq remains only for values

of (h I - hq) less than about 3 H. Because equation (35) is based upon the restric-

tion that (h1 - hq) is greater than 3 H, and because Sq approaches Sq,min for

such values of (hi - hq) in all three regimes, it is immediately apparent that the
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general factor Sq in equation (35) should be replaced by the specific value Sq:;nin.

It is somewhat less apparent that Sp/p, the general expression for relative un-

certainty in equation (35), aught to be replaced by 8pq/Pq, the specific relative

uncertainty for hq, particularly when equation (35) is applied to the small-

increment regime. The reasons for the latter replacement stem from the facts

that the following dual relationship exists for the dual conditions (h, - hq) > 3 H,

and Ah < 0.2 H:

(1) The value of the series Sq, which becomes essentially Sq,min for

(hi - hq) > 3 H, simultaneously approaches the value of (Pq - Pq-1)/Pq,

the last term in equation (32), defining Sq. This near equality between

Sq,min and (pq - Pq- )/Pq in the small-increment regime is demonstrated

graphically in Figure 6.

(2) The term (pq - Pq-1)/Pq is properly associated with the specific un-

certainty 6pq/pq rather than with 6p/p. This situation is evident from

the fact that the quantity (pq - Pq-1 )/Pq is a coefficient of 5pq/pq in

equation (30), which, except for an isothermal condition, is a general

expression equally applicable to both 5Hq/Hq and 5Tq/Tq. Thus, at

least for the small-increment regime, equation (35) may be rewritten

as

S Sqmin (36)
Tq m Ah Pq

Even in the large-increment regime, where the value of Sq,min approaches

f[v2(Pq - Pq-1)/Pq], the value of Sq,min is still dominated by (pq - Pq-1)/Pq,
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(which is equal to unity in this regime), and therefore, Sq,min should still be

associated with bpq/Pq

Because (pq - Pq-1 )/Pq approaches unity in the large-increment regime, while

Sq,min approaches N/2, it is reasonable to write the following special form of

equation (36) for that regime:

5T H qp
2 V -(37)

Tq Ah pq

This equation is seen to be analogous to equation (20) involving uncertainties in

pressure-height data.

In addition to the graphs of Sq,max , Sq,mi n , and (pq - Pq-1 )/Pq versus Ah,

Figure 6 also contains a graph of the function (H/Ah) versus Ah, for H = (10/

-) km, or T = 241.57 K. This function, which obviously varies inversely with

Ah, is seen to have a constant negative 450 slope for a fixed value of H. When

this function is multiplied by Sq,min , a quantity which according to Figure 6

is seen to have a +450 slope in the small-increment regime, the product for

the small-increment regime is essentially a constant (independent of Ah) with

a value near unity, for all values of H or T. This situation is depicted in Figure

7 where the value of the product [Sq,mi n * (H/Ah)] versus Ah is plotted in all

three regimes for each of three values of HI, (7/,/), (10/-v2), and (13/-,2) km' ,

consistent with the mean temperatures 169.10, 241.57, and 314.04 K, respec-

tively. Because of the characteristics of this product, equation (35) as applied
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to the small-increment regime may -be replaced by

qTq 'pq (38)
Tq Pq

Thus, three different expressions represent the value of 6Tq/Tq as a function

of uncertainty in density-height data, equation (38) in the small-increment

regime, equation (37) in the large-increment regime, and equation (36) in the

transition regime.

The application of the data from Figure 7, as representative of the three equa-

tions noted, to each of nine particular values of uncertainty in density-height
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data, yielded the nomograph shown in Figure 8. This figure shows the percent

uncertainty in the temperature, derived from density-height data through equa-

tion (12), as a function of density-sampling height interval for a band of normal

atmospheric temperatures, 169 K to 314 K, and for a wide range of density-

height uncertainty, 0.01% to 100%. This nomograph can serve as the basis for

estimating the relationship between the uncertainty in each value of a set of

density-height data to each point of the related Temperature-height profile, or

vice versa, for the region of the earth's atmosphere below about 120km.

The examples of hypothetical use of the pressure-data nomograph, discussed

in Section III, could be readily transposed to apply to this density-data nomo-

graph. In particular, Figure 8 shows that, in order to have no more than a

1% uncertainty in a 245 K temperature, for a temperature height-profile with

a height resolution of 100 meters, the relative uncertainty in the density obser-

vations need not be smaller than 1%. This value is 100 times larger than the

0. 01% uncertainty required of pressure data to meet the same conditions, and

represents a very significant relaxation of the measurement requirements.

The estimates deduced from the use of this nomograph are theoretically accurate,

as long as the data to which the nomograph is applied comply with the three re-

strictions imposed during the preceeding development. It will be seen, however,

that one of these restrictions may be essentially eliminated, while a second has
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only a small influence. One may recall that these restrictions are as follows:

1. The height hq associated with Tq is more than 3 scale heights below

h i the greatest height of the sounding, i.e., (h, - hq) > 3 H.

2. The relative uncertainty of the density-height data is constant over

the entire height range of the sounding.

3. The atmosphere is isothermal over the height range of the sounding.

The first of these restrictions must be retained unless one has some independent

means for determining T, or H1 and its uncertainty as required by equation (33).

Only for (h i - hq) > 3 H will the ratio p, /pq be sufficiently small to permit the

associated term to be neglected in equations (34) through (38).

The second restriction is not a very significant one since it has been shown that

the constant factor (6p/p), used as the general expression for density uncertainty

in equation (35), is dominated by the particular value (Spq/Pq) associated with the

density-height data at hq. Thus, the need for ( 6p/p) to be constant over the

entire height range of a particular sounding can be relaxed without significantly

affecting the validity of any of equations (36), (37), or (38).

The third restriction appears to be philosophically important because the earth's

atmosphere below 120 km is certainly not isothermal. Actually, however, the

existance of the various non-zero gradients in the temperature profile has little

effect on 6Tq/Tq. This situation is due to the fact that 8Tq/Tq depends pri-

marily on the conditions between the data points (Pq_-, hq-1) and (pq, hq), and
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hardly at all upon the condition between other pairs of data points. Even a ndQn-

zero temperature gradient between the two specified data points has only a small

effect, and this can be readily accounted for. This is accomplished by reintro-

ducing into equation (36) certain temperature-gradient-dependent coefficients

which are associated with 6pq/pq in the general version of 6Hq/Hq (or equiva-

lently 5Tq/Tq), as expressed by equation (23).

To begin with, (H/Ah) in equation (36) is replaced by its original form H/(Ah + AH)

as used in equation (23). Then, Sq,min , which has been shown to be almost

exactly equal to [ (pq - Pq )/Pq] for isothermal conditions in the small-increment

regime, is replaced by the product of this ratio times its associated coefficient

q-1, qfrom equation (23). Thus, for an atmosphere with varying temperature

or scale height, we may rewrite equation (38) for the small-increment regime as

qT Pq 'q

Using the value of aq 1 , as defined by equation (27), and replacing H by (2Hq +

AH)/2, where AH = (Hq_1 - Hq), and remembering that Ah = (hq-1 - hq), we

have an expression for 6Tq/Tq in terms of Hq_1 and Pq-1 at height hq_1 , and

in terms of Hq, pq, and 6 pq at height hq:

Tq (2Hq + AH)2 A Pq-1 (40)

T 4H (Ah + AH) 2 q - 1, q Pq q
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It is interesting to examine an example of the use of equation (40) in terms of a

realistic set of data, applicable to the small-increment regime, as taken from

the U.S. Standard Atmosphere 1962. Choosing the height interval, Ah = lkm',

between hq 1= 66 km'and hq = 65 kmin', in a region of negative temperature grad-

ient, AT/Ah = -4 K/km, we find pq _1 and pq to be 1.3482 x 10 - 4 and 1.5331 x

10- 4 kg m - 3 respectively, Hq = 7. 0709 km', and AH = -0.1173kmin'. The substi-

tution of these data into equation (40) leads to a value of 1.076 for the coefficient

of bpq/pq, a value involving only a second-order difference from the unity coef-

ficient of equation (38); i. e., 6Tq/Tq, in this case, would be 1.076 times 6pq/pq,

instead of 1. 000 times Spq/pq for the isothermal case. Thus, the assumption of

isothermality, both in the development and use of equations 36, 37, and 38, is

seen to introduce only a second-order error, and accounting for this error is un-

necessary in most uncertainty determinations.
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V. CONCLUSIONS: A COMPARISON OF THE DENSITY-DATA NOMOGRAPH

WITH THAT FOR PRESSURE DATA

The nomograph relating 6 T/T to sampling-height interval of density data for

various temperatures and density uncertainties depicted in Figure 8 is based on

the same range of values of temperature and sampling-height interval used in

the nomograph of Figure 5, which relates 6T/T to the sampling-height in-

terval of pressure data. In addition, the nine assumed values of 6p/p in Figure

8 are identical to the nine assumed values of 6p/p in Figure 5. Thus, the two

figures are exactly comparable, with the only difference being that Figure 8 is

for density data, while Figure 5 is for pressure data. A comparison of these

two figures shows that, at least from the point of view of height resolution and

uncertainty of derived temperatures, density-height data are to be preferred

over pressure-height data.

In the large-increment regime, i. e., Ah > 5H, the nomograph of Figure 8 is

essentially identical to that of Figure 5. In this regime, bothfigures show that

the uncertainty in the derived temperature is decreased as the height resolution

of the related temperature profile is decreased, i.e., as the sampling-height

interval is increased. Even the smaller sampling-height intervals wi thin this

regime are so large, however, i.e., Ah - 5H, or about 30km', that the height

resolution makes- this regime essentially useless for temperature-height de-

terminations at heights below 120 km'.
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In the small-increment regime as well as in the transition regime, Figure 5 and

8 are quite different from each other. In the small-increment regime (Ah <

0. 2H), the uncertainty in the temperatures derived from density-height data is

seen to be independent of both Ah and T (or H), as long as (h1 - hq) > 3H. In

this regime, 6Tq/Tq derived from densities is dependent only upon the un-

certainty of the density-height value associated with the related height hq. It

is apparent that uncertainty considerations place no limits on the usable fineness

of the height resolution of the density-height data. This situation is in contrast

to that associated with pressure-height data in Figure 5 where 6 T/T is seen to

depend upon T and Ah, as well as upon 5p/p, and where 5T/T becomes pro-

hibitively large for reasonable values of Sp/p when Ah becomes smaller than

about 1 km.

In the transition regime, Figure 8 shows less difference from Figure 5 than in

the small-increment regime. In this transition regime, the characteristics of

the function determining 5T/T from density-height data vary between those of

the small-increment regime and those of the large-increment regime, such

that 6T/T decreases slightly as Ah varies from about 0. 2H to about 5H. In

going from the small-increment regime to the transition regime, however, the

increased coarseness of the height resolution of the related temperature-height

profile would more than offset the correspondingly small decrease in tempera-

ture uncertainty, particularly since the minimum values of Ah in this regime

are already of the order of 1km'. Even in this regime, however, the
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eensity-height data yield smaller values of 6 T/T than are obtained from

pressure-height data.

In general, a comparison of Figure 8 with Figure 5 shows that the density-height

data are far more desirable than pressure-height data at least from the point

of view of the size of the uncertainty and of the height resolution of the derived

temperature-height profile.
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APPENDIX A

DEVELOPMENT OF THE GENERAL EXPRESSION FOR

(6 Tq/Tq)2 AND FOR (6 Hq/Hq)2

It is well known that temperature may be deduced from density-height data by

means of the following. relationship:

P, GM 1 hq
Tq = -- T + R -- p (h) dh (A-l)Pq R pq Jh 1

where

p(h) is the function relating atmospheric density to geopotential height,

h, is the geopotential height of the upper limit of the region of integration,

in geopotential meters (m' ),

hq is the geopotential height of the lower limit of the region of integration,

in geopotential meters (m'),

G is the geopotential gravity constant 9. 80665 m 2 sec- 2 (m' )-',

M is the mean molecular weight of the air 28. 9644 kg (kmol)- ,

R is the universal gas constant 8. 31432 x 103 joules K -1 kmol- ,

P1 is the atmospheric density at hi,

T 1 is the atmospheric temperature at hi,

pq is the atmospheric density at hq, and

Tqis the sought-after atmospheric temperature at hq.
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Because of the defined relationship between temperature and scale height H,

i. e., H = TR/GM, it is convenient to rewrite equation (A-1) as

P1  1 hq
H =.-H +-1 p (h) dh (A-2)

qPq Pq h1

where

H1 is the scale height at h i and

Hq is the scale height at hq.

Since p(h) is generally not known as an analytical function, for which one might

find a perfect integral, but rather is known as a set of numerical values of

density versus geometric or geopotential height, it is convenient to replace the

integral term in equation (A-2) by a series approximation. One possible form

of such an approximation is a series of terms each representing the area of

successive trapezoids under the graph of the natural logarithm of density versus

h. When the data,, p versus h, is plotted on a semilogarithmic scale, i. e.,

£ np versus h, with successive data points connected by straight-line segments,

as is frequently the situation for closely spaced density-height data, the series

of logarithmic trapezoids exactly fits the area under the graph. In using this

approximation to the integral equation, (A-2) may be rewritten as

p 1  1 q (h_ -h) (p -p-_ )

Hq H + 1 J (A-3)
S pq pq9 j= npj - npj_1

The validity of the approximation of equation (A-2) by equation (A-3) improves as

the height increment between successive density values decreases.
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The uncertainty in the computed value of Hq is based on a function involving the

partial derivative of Hq with respect to each of the independent variables. These

include Hi and the appropriate number of density-height data pairs; i.e.; hi,

pl; h , pj (for j = 2 to q - 1); as well as hq, Pq' With the assumption that the

uncertainty in each data pair is entirely in the density value, we are interested

in the partial derivatives of Hq, as expressed by equation (A-3), with respect

to only the following variables: H1, p, pj (for j = 2 to q - 1), and pq, having

the general designation y i . These partial derivatives aHq/ ayi multiplied by

the corresponding uncertainty 6 yi are given in the following equations:

The product of 611 times the partial derivative of Hq with respect to Hi is

simply

allHq P H1 H
H SH = 1 H1 (A-4)

The product of 6pl times the partial derivative of Hq with respect to p1 is

apl P1 I - np2-1) - pq P2 np -

1 H_

It can be shown, however, that

Rnp 2 -QnP1  Ah AH1,2 (A-6)

where the double subscript "1, 2" on the right-hand member of equation (A-6)

indicates that Ah = (h - h 2 ), AH = (H1 - H2), and H = (H1 + H2 )/2. When h

is greater than h 2 , the left-hand side of equation (A-6) is positive, Ah is

positive, and AH has the sign of the temperature gradient a T/ a h in the region
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h1 to h 2. The same equation, with other consecutive digits, as for example,

2, 3 or 3,4, etc., indicates these same relationships for the corresponding,

height intervals.

Equation (A-6) combined with equation (A-5) yields

aH p1 H Ah 2 1  Hp
q* 6P = T Eh- -+H (h . (A-7)

ap 1 AhA Ah+ H 1,2 P1

The product of 6p 2 times the derivative of Hq with respect to p 2 is a quantity

which, when modified by the introduction of equation (A-6), with each of two

different, but appropriatepairs of digits, becomes

aH H Ah H
ap2 P2 =  1 Ah +A 1, pH h +AH +

(A-8)

S Ah p2  H P2

S( Ah+AH 3  Pq Ah+AH 2 , p

In this equation the subscript "1, 2" on each of two factors has the same signi-

ficance as it has on these same two factors in equation (A-7), while the subscript

"2, 3" on each of two other factors signifies that the quantities AH, AH, and Ah

within each of these factors are associated with the geopotential height incre-

ment h 2 to h 3 . Thus, for these two factors, Ah = h2 - h 3 , iH = (H2 + H 3)/2, and

AH = H 2 - H 3 . Equation (A-8) obviously involves two height increments, the ,

two which are separated by the height h 2 .

The partial derivative of Hq with respect to each of p 3 , p4 , ... , Pq-2, and

Pq-1, when multiplied by Spj (where j is successively 3, 4, ... , q-2, and q-1)
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and, when further modified by the appropriate introduction of equation (A-6), is

identical to equation (A-8) except for the successive incrementing of the sub-

scripts. Thus, a convenient form of the product of bPqi-, times the particular

expression for the partial derivative of Hq with respect to Pq-l is

IHq Pq1 _ Pq-1 Pq-21*-i Spq-1 = +Hq- q- 1  q-2.q- q Pq Ah + AH q-2,q-+

(A-9)
[( Ah 1 -  (PqPq Ah H) p q_l

SA'h + AH q-iqJ Pq Ah+ H q-1, Pq-1j

In equation (A-9) the subscript "q-2, q-1" on each of two factors signifies that

the quantities H, AH, and Ah within each of those two factors are associated with

the geopotential-height increment hq- 2 to hq_, so that Ah = hq_2 - hq_, H =

(Hq_2 + Hq_ )/2, and AH = Hq- 2 - Hq- . Similarly, in that equation, the sub-

script "q-1, q" on each of two other factors signifies that the quantities H, AH,

and Ah within each of these two factors are associated with the geopotential-height

increment hq_lto hq, so that Ah = hq_1 - hq, H = (Hq-1+ Hq)/2, and AH = Hq_1-

Hq. Again this expression involves two height increments, in this instance the

two separated by the height hq_ 1 .

Because of the common form of the partial derivatives of Hq with respect to

P2 ' P3' ""' Pq-2' and Pq-1' , it is desirable to write a general version of equa-

tions (A-8) and (A-9) to express the product of 6pj times the partial derivative

of Hq with respect to pj, where j is understood to have values ranging from

2 to q-1.
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This general equation is

H Ah . p1 F p.H j_,j+
* p . q0 -* +Pi III P 1+

ap 3 Ah+AH _ Pq \ Pp Zq )Ah+AH/jj
(A-10)

[( Ah 0)Pj -Pj p

-1 Ah+AH Pq pq Ah+AH ' P

Finally, the product of Spq times the partial derivative of Hq with respect to pq

when modified by the introduction of equation (A-6), is

allqH Ah qpq H

aPq q -1,q q ( Pq Ah H q
(A-11)

(Hl) qPqqH1 p j1 ]h + AH J_ p pq

In this equation the subscript "q-l, q" on each of two factors has the same signi-

ficance as in equation (A-9), while the subscript "j-1, j" on another factor in the

general term signifies that the quantities H, AH, and Ah within that term are

associated with the general geopotential height increment hj_1 to hj . Thus, for

this factor, Ah = h j 1 - hj, H = (Hj_ + Hj)/2, and AH = H j _
i - Hj.

It is evident that one part of this equation deals with the data associated with the

single height increment Ah = (hq-1 - h) between the lowest two density-height

values involved in the calculation of Hq, while another part of the equation deals

with all the height increments between h I and hq, and their associated density

data.
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Each of equations (A-4), (A-7), (A-10), and (A-11) is directly involved in the

Gausian expression for relative uncertainty 6Hq/Hq which follows:

SH 1 H 2 H 2 q - 2  aH 2 V2

H H laH( p , E-, p .)aL\ + )+ * *p (A-12)q q 1 pl j 2 P

The first, second, and fourth terms.within the brackets of this equation are

seen to represent exactly the squares of equation (A-4), (A-7), and (A-11),

respectively. The third term represents the squares of equation (A-10) evalu-

ated for j ranging from 2 to q-1. The bracketed portion of the right-hand side

of equation (A-12) is seen to be multiplied by the reciprocal of Hq, thereby im-

plying that each term of equations (A-4), (A-7), (A-10), and (A-11) must ulti-

mately be multiplied by 1/Hq, either before or after these equations are squared

and summed to equal (8Hq/Hq) 2 . It is convenient in this case to do the multipli-

cation before squaring and summing. Equations (A-7), (A-10), and (A-11), each

contain the doubly subscripted factor

I Ah + AH

in at least one term. It is convenient therefore to accomplish this multiplication

operation in the appropriate terms by introducing Hq into the denominator of this

doubly subscripted factor, thereby converting this factor into a nondimensional

coeffidient with a value close to unity. Then, in order to put the resulting coef-

ficient into proper prospective with respect to the remainder of the equation,

and also to conserve space in the uncertainty expression being developed, it is
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convenient to define each of these modified factors by a specific symbol. Tius,

from equation (A-7) the modified factor is defined as the coefficient al,2 , i e.,

a =A * h (A-13)t,2 "Ah + AH

while the two modified factors involved in equation (A-11) are defined as

H = -H +. hn (A-14)

and

,j1 I Ah +H) (A-15)

The modified factor from equation (A-10) is defined as the coefficient aq_1 ,q,

i. e.,

q =lq Ah (A-16)
Hq-q qh+AH q-l,q

Substituting equations (A-4), (A-7), (A-10), and (A-11), respectively, into the

successive terms on the right-hand side of equation (A-12), dividing each of these

equations by Hq (i. e., replacing each of the "l's" in the denominators of these

equations by Hq), and simultaneously replacing the resulting modified doubly

subscripted factors in these equations by the equivalent coefficient forms defined

in equations (A-13) through (A-16), leads to the following expression for

(6Hq/Hq )2:

(Hq)2 (H 6Hi 2 + P P~q 1I2P2P( I2JHq ) I q q ) A Hq iq L\ _ q +,,h\j,./
• : \ P<Q/ -, 2 ,, / +

Pq i -q

(A-17)

+ - H( - I q --- t 1P-
"Pq q +" "= Hq PJ q q "
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Because SHq/Hq is identically equal to bTq/Tq, equation (A-17) may be re-

written as

(8Tq\2 P) 2 2 H I 1i 1p2 _p Hj P 2 P/_j]2p2 +

Hq p 1 pq2

Iq (HI XH2(\

Ipj [;q 2q j + /5pj

Pq\ Pq fl / + Pq -I]J

(A-18)
-Iq 2 2P
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